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Summary

One of the major causes of blindness is primary open-
angle glaucoma, which affects millions of elderly people
worldwide. Genetic studies have so far mapped three
loci for the adult-onset form of this condition to the
2cen-q13, 3q21-q24, and 8q23 regions. Herein, we re-
port the localization of a fourth locus, to the 10p15-p14
region, in one large British family with a classical form
of normal-tension open-angle glaucoma. Of the 42 mei-
oses genotyped in this pedigree, 39 subjects (16 affected)
inherited a haplotype compatible with their prior clinical
designation, whereas the remaining 3 were classified as
unknown. Although a maximum LOD score of 10.00
at a recombination fraction of § = .00 was obtained
with D10S1216, 21 other markers provided significant
values, varying between 3.77 and 9.70. When only the
affected meioses of this kindred were analyzed, LOD
scores remained statistically significant, ranging from
3.16 (D10S527) to 3.57 (D10S506). Two critical recom-
binational events in the affected subjects positioned this
new locus to a region of ~21 c¢M, flanked by D10S1729
and D10S1664. However, an additional recombination
in a 59-year-old unaffected female suggests that this lo-
cus resides between D10S585 (or D10S1172) and
D10S1664, within a genetic distance of 5-11 cM. How-
ever, the latter minimum region must be taken cau-
tiously, because the incomplete penetrance has previ-
ously been documented for this group of eye conditions.
A partial list of genes that positionally are considered
as candidates includes NET1, PRKCT, ITIH2, IL2RA,
IL15RA, IT1H2, hGATA3, the mRNA for open reading
frame KIAA0019, and the gene for D123 protein.
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Introduction

Glaucomas are a group of eye disorders with diverse
clinical manifestations and a variable age at onset, from
birth or early childhood to very late in life (Shields et
al. 1996). They are one of the three most common causes
of blindness worldwide (Thylefors and Negrel 1994;
Quigley 1996; Wilson and Matrone 1996). Although the
primary congenital and juvenile types of glaucoma are
relatively uncommon, the insidious adult type, primary
chronic open-angle glaucoma (COAG), accounts for the
majority (70%) of glaucoma cases in mainly white pop-
ulations, and its prevalence has been found to be four
or more times higher in those of mainly African extrac-
tion (Leske 1983; Quigley and Vitale 1997). However,
in Asian and, especially, in Inuit populations, primary
angle-closure glaucoma, which has a different patho-
genesis, may have an equal prevalence or may predom-
inate. Open-angle glaucoma accounts for ~3% of the
blindness in white and 7.9% in black American popu-
lations (Tielsch et al. 1991; Quigley 1996; Quigley and
Vitale 1997). This condition is clinically diagnosed by
three tests to reveal characteristic glaucomatous optic
nerve damage; characteristic visual field loss; and in-
creased intraocular pressures (IOP) (Crick 1974; Quigley
1993; Wilson and Matrone 1997). Although IOP is not
solely accountable for this phenotype, it is, nevertheless,
a major contributory factor. Normal- or low-tension
glaucoma (NTG or LTG) is a form of open-angle glau-
coma in which typical glaucomatous cupping of the op-
tic nerve head (ONH) and visual field loss are present
but in which the recorded IOPs are consistently within
the statistically normal range of <22 mmHg (Hitchings
1992; Grosskreutz and Netland 1994; Werner 1996).
NTG is now believed to be more frequent than was
originally thought, accounting for about one-fifth of pri-
mary open-angle glaucoma (POAG), although a single
screening test may record NTG in more than one-half
of the cases (Tielsch et al. 1991; Werner 1996). Most
COAG patients do not manifest the disease before the
age of 40 years, even though the first sign of the con-
dition may have appeared earlier but was not detected.
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This is probably because there were no symptoms to
make the patients aware that a test was necessary or the
condition was not detected even when examined rou-
tinely by the usual methods, which are sometimes in-
adequately carried out. Earlier changes can now be de-
tected in several ways. Using confocal laser scanning
systems (e.g., the Heidelberg retinal tomograph), the to-
pography of the ONH (Weinreb et al. 1989; Dreher et
al. 1991) and the thickness of the nerve fiber layer (Béch-
toille et al. 1997) can be better assessed. Early changes
in visual fields can be detected by more accurate methods
of measurements of progression (Fitzke et al. 1996;
Crabb et al. 1997). In addition, newer indicators, such
as motion detection (Baez et al. 1995) and contrast sen-
sitivity (Yu et al. 1991), are being evaluated, as are blue/
yellow perimetry (Johnson et al. 1993) and pattern elec-
troretinography techniques (Korth et al. 1993).

The late onset and painless nature of this condition
have serious implications for diagnosis and proper treat-
ment of COAG. As a consequence, it has been difficult
to determine the exact mode of inheritance for this con-
dition, since the majority of the patients are either iso-
lated cases or, by the time of first presentation, no ac-
curate clinical information or systematic ophthalmic
examination would be available on previous genera-
tions. Therefore, autosomal dominant, autosomal re-
cessive, X-linked, and even multifactorial modes of in-
heritance have been suggested (Francois 1966; Jay and
Peterson 1970; Netland et al. 1993; Lichter 1994; John-
son et al 1996). However, in the majority of COAG
families that have been systematically studied, the au-
tosomal dominant mode of inheritance with a reduced
penetrance has been suggested (Avramopolus et al. 1996;
Richards et al. 1996; Stoilova et al. 1996; Wirtz et al.
1997; Trifan et al., in press). A number of reports de-
scribed families with both NTG and high-tension glau-
coma subjects within the same family (Stoilova et al.
1996; Werner 1996). Conversely, few simple NTG fam-
ilies are documented in which the phenotype is trans-
mitted as an autosomal dominant trait (Bennett et al.
1989).

The genetic linkage study of POAG families has been
the subject of a number of reports in the literature. Thus
far, a locus for the juvenile open-angle glaucoma (i.e.,
GLC1A; MIM 137750) has been assigned to the long
arm of chromosome 1 (Sheffield et al. 1993; also see
Raymond 1997; Sarfarazi 1997), and more recently a
number of mutations in the trabecular mesh-
work-induced glucocorticoid-response protein (TIGR)
have been reported in different families (Adam et al.
1997; Stoilova et al. 1997; Stone et al. 1997). For
COAG, the first locus (GLC1B; MIM 137760) has been
mapped to 2cen-q13 (Stoilova et al. 1996) and the sec-
ond locus (GLC1C; MIM 601682) to 3q21-q24 (Wirtz
et al. 1997), and, more recently, we mapped the third
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locus (GLC1D) to the 823 region (Trifan et al., in
press). In this article, we present the chromosomal lo-
calization of a new locus (i.e., GLC1E) to the 10p15-
pl4 region in one large family with a typical normal-
tension POAG.

Material and Methods

Family Ascertaiment

A single large family (POAG-90) has been ascertained
through the database of the International Glaucoma As-
sociation, London. Consent to contact other family
members for their participation in the study was ob-
tained from the proband. The study protocol and con-
sent forms were approved by the University of Con-
necticut Health Center Institutional Review Board. For
the clinical reports, we have depended, to a considerable
extent, on cooperating consultant colleagues, in view of
the wide geographic spread of the family members. Fam-
ily relationships of glaucoma subjects and their normal
kinship have also been obtained. Clinical information
included, but was not limited to, data on the age at onset/
diagnosis, IOP before and after treatment, stages of vi-
sual field loss, evidence for glaucomatous optic-nerve
change, cup/disc ratios, past eye surgery, current eye
medication, and type and primary/secondary nature of
glaucoma, as well as other associated clinical findings
for each individual member of the pedigree. A summary
of clinical information obtained on the affected members
of this family is given in table 1. All affected members
had POAG with no associated abnormalities and were
diagnosed in early to late adulthood. The clinical di-
agnosis of both affected and normal members of this
family has been assigned by their respective ophthal-
mologists. Affected status was affirmed after ophthal-
mologic examination, which normally included tonom-
etry, gonioscopy, slit-lamp examination, and visual field
tests. The diagnosis was based on the characteristic ap-
pearance of the optic disc, typical visual field loss, and
normal open anterior chamber angle. IOPs in the ma-
jority of the affected members of this family were mea-
sured, as always, at <22 mmHg, and, therefore, this
kindred was classified as a typical NTG family. As shown
in figure 1, the glaucoma phenotype in this pedigree
segregated as an autosomal dominant condition with no
documented skipped generation. A total of 46 individ-
uals consented to participate in this study and to donate
specimens (blood, buccal cells from mouth washes, and
skin biopsies), including samples from 15 affected sub-
jects. DNA samples from six other at-risk subjects were
not available at the time of this study. The genotype of
one additional affected subject (II:1) was inferred from
his offspring and his spouse’s genotypes. Because no clin-
ical information was available for one deceased subject
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Table 1
Clinical Data on 15 Affected Subjects in the POAG-90 Family
Highest
Age at 10P Cup/Disk Visual
. . Recorded ONH Ratio Fields
Diagnosis

Subject  Sex (years) Ob OS OD OS OD OS ODb OS Treatment

11:3 M 45 24 23 A A 90 .90 A A Timolol maleate

IIL:1 F 40 15 15 A A 90 .90 A A Timolol maleate,
trabeculectomy OS

1.5 M 49 17 20 N A .70 .70 N A Nil

III:6 F 38 22 23 A A .80 .90 A A Betaxolol hydrochloride,
trabeculectomy

III:8 M 58 16 15 A A .70 .80 A A Timolol maleate

1:10 M 35 14 20 A A .80 .80 A A Surgery (OD)

1I:11 F 62 25 21 A N .80 .50 A A Timolol maleate

1I:14 F 40 16 16 A A 95 .95 A A Timolol maleate

1L:17 F 52 19 17 A A .85 .85 A A Timolol maleate

11:19 M 36 20 20 A A .70 .70 A A Timolol maleate

I11:20 F 65 18 19 A A .80 .80 S A Nil

Iv:1 F 28 19 19 N A .60 .70 A A Nil

1v:2 F 23 18 18 A A .80 .85 A A Timolol maleate

Iv:11 F 47 16 16 A A 90 .90 A A Betaxolol hydrochloride

Iv:20 F 40 21 18 A A .60 .60 A A Nil

NOTE.—OD = right eye; OS = left eye; A = abnormal changes of a glaucomatous type; S = suspicious of

glaucomatous change; and N = normal.

(I1:9), her clinical status remained unknown. This ped-
igree consisted of 51 segregated meioses, of which 18
(11 female and 7 male) were affected with POAG. The
vertical inheritance of the POAG phenotype, together
with a direct male-to-male transmission, is consistent
with an autosomal dominant pattern of inheritance in
this pedigree.

Molecular Analysis

DNA was extracted from peripheral blood (Moore
1994), buccal cells (DNAzol, Molecular Research Cen-
ter), or skin fibroblasts (Trizol, Gibco BRL). Genomic
DNA was amplified by PCR using sequence-specific
primers. Most of the amplifications were carried out by
multiplex PCR of two to three short-tandem-repeat
polymorphism (STRP) markers. Information on primer
sequences, number of alleles, band sizes, type of poly-
morphisms, and order of markers were obtained from
the Genome Data Base (Fasman et al. 1994), Généthon
(Dib et al. 1996), the Utah Marker Development Group
(1995), the Cooperative Human Linkage Center (Shef-
field et al. 1995), the Chromosome 10 web site (at Ge-
nome Therapeutics Cooperation [http://www.cric.com/
htdocs/sequences/chr10-mapping/index.html]), and the
Marshfield Center for Medical Genetics. Additional in-
formation on the radiation hybrid and YAC contig map
were obtained from the Whitehead (Hudson et al. 1995)
and Stanford Institutes for Genome Research. The oli-
gonucleotide primers used in this study were purchased
from Research Genetics. Amplification conditions varied

for different markers, but usually a 2-min initial dena-
turation at 94°C was followed by 30-35 cycles of de-
naturation at 94°C for 30 s and annealing at 55°C-60°C
for 40 s (depending on specific primers), with a final
extension at 72°C for 2 min. We used 25 ul total volume
per reaction consisting of 1 x PCR buffer (10 mM Tris-
HCI, pH 8.3, 50 mM KCI, 1-1.5 mM MgCL,), 0.25 mM
each primer, 100 ng template DNA, 50 mM each dNTP,
and 0.25 U DNA polymerase (AmpliTaq, Perkin-Elmer).
The PCR reaction was carried out on a GeneAmp 9600
PCR system (Perkin-Elmer). The amplified products
were separated by electrophoresis on a 6%-7% dena-
turing polyacrylamide gel. The gels were subsequently
silver stained (Bassam et al. 1991), photographed, and
thereafter manually genotyped for the STRP markers.

Linkage Analysis

The obtained genotypic results were entered into a
dedicated computer program (Database Management
System; author’s unpublished program) for Mendelian
error checking and data inconsistencies and were sub-
sequently used to prepare genotypic data for analysis by
the LINKAGE program (Lathrop and Lalouel 1984).
Two-point linkage was calculated using the MLINK
component of the LINKAGE package (FASTLINK ver-
sion 3.0P; Schaffer et al. 1994). LOD scores were ob-
tained under the assumption of an autosomal dominant
disorder with a frequency of .0001, no phenocopy, and
complete penetrance, since no skipped generations were
observed in this family. Multipoint linkage analysis was
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Figure 1

Pedigree structure of the POAG-90 family, segregating for NTG. The order for a selected group of STRP markers presented in

this kindred is given at the top left corner of the figure. Inherited haplotypes are shown below each subject. The solid bars indicate the affected-
bearing haplotypes, and the open bars indicate the normal haplotypes. The uninformative portion of haplotype in individual IV:11 is shown
with a thin black bar in the middle. Note that individual III:14 is recombinant for the centromeric marker D10S1664, whereas her daughter
(IV:11) is recombinant for the telomeric marker D10S1729. The three gene carriers who have inherited the affected-bearing haplotype are
shown with a dot inside their symbols (IV:3, IV:4, and IV: 19). The proband (IIl:1) is indicated with an arrow.

obtained using the LINKMAP module of the LINKAGE
program. Because of the reported late onset in this group
of eye conditions and the lack of any reliable penetrance
ratios, and in order to eliminate the effect of possible
incomplete penetrance, the LOD score calculations were
repeated for the affected meioses only. Haplotypes for
the entire set of markers were constructed and evaluated
for genotype inconsistency and inheritance from both
parental generations.

Results

Clinical Phenotype

Clinical findings in the glaucoma patients from family
POAG-90 are described in detail in table 1. Of the 15
affected subjects presented in this table, 11 had all the
three common diagnostic criteria of abnormal ONH,
large cup/disc ratios, and visual field loss in both eyes.
For the remaining four affected subjects, one individual
(ITI:5) was definitely affected in his left eye but in his
right eye had a cup/disc ratio of 0.7, but both visual
fields and ONH were normal. This 51-year-old subject,
on his last visit, had an inferior scotoma in the left eye,

and the right eye was normal, when checked by the
Humphrey 24-2 visual field analyzer. His optic disc also
showed vertical cupping of 0.7 in both eyes, and his IOP
measurements were 20 mmHg in the left eye and 17
mmHg in the right eye (table 1). When his optic discs
were measured on the scanning laser ophthalmoscope,
his left disc was abnormal superiorly, which concurred
with the inferior field defect, but his right disc was nor-
mal. Although this subject is definitely affected in his
left eye, his right eye needs to be evaluated on a regular
basis. Another subject (IlI:11 ) was affected with typical
glaucomatous changes in her right eye and normal ONH
but abnormal visual field changes in her left eye. Indi-
vidual III:20 had abnormal optic discs, with a cup/disc
ratio of 0.8 in both eyes, and an abnormal upper arcuate
loss of field in the left eye, with suspicion of arcuate
depression of the right field, and so she was classified
as a left NTG with only a suspicion of the same condition
in the right eye. Finally, the last individual (IV:1) was
affected with typical glaucomatous changes in her left
eye and abnormal visual field, with cup/disc ratio of 0.6
in her right eye. Therefore, since the questionable eye in
these subjects either had abnormal ONH, abnormal vi-
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sual field loss, or large cup/disc ratio and, furthermore,
since the other eye was definitely affected, the clinical
status of these four subjects was coded as affected. Al-
though NTG is usually a bilateral condition, one eye
often becomes affected ahead of the other eye, so the
assignment of affected status to the four subjects dis-
cussed above is considered justifiable, since one of their
eyes was definitely affected with glaucoma. Figure 2
shows the visual fields for the proband (IIl:1) in family
POAG-90. In the left eye, severe upper arcuate loss and
marked lower arcuate loss are apparent, whereas, in the
right eye, marked upper and lower arcuate loss are ev-
ident. Figure 3 shows both the optic discs and visual
fields for the proband’s youngest daughter (IV:2). Both
optic discs are grossly abnormal when compared with
an age-match group, the left disc being worse than the
right. The right visual field shows a nasal step with slight
upper and lower arcuate depression of sensitivity, which
is compatible with glaucoma (fig. 3A), whereas the left
field shows a ring-type scotoma with marked upper and
lower arcuate loss, which is of a glaucomatous type (fig.
3B).

The age at diagnosis in the family was documented
to vary between 23 and 65 years, with a mean of 44
years. The IOPs in the affected family members varied,
but they were generally in the normal range. Twelve of
15 affected members had IOPs consistently <22 mmHg.
The remaining three patients have had IOPs of 23, 24,
and 25 mmHg, recorded at some time during their fol-
low-up visits. The phenotype consisted of a slow pro-
gression that was accompanied by glaucomatous optic
nerve damage, large cup/disc ratios, and an eventual vi-
sual field loss. Five affected and three normal subjects
had myopia. Of 15 affected family members (5 male and
10 female) for whom a detailed nonocular clinical his-
tory was available, 3 females gave a history of occasional
present or past episodes of migraine, and 1 female gave
a definite history of Raynaud phenomenon. Therefore,
this is not a family in which vascular mechanisms in-
crease optic nerve vulnerability to a relatively low rise
in IOP. There was no history of hypertension or diabetes
in those affected. In summary, we did not find any par-
ticular relationship between the myopia, systemic ab-
normalities, and glaucoma in this family.

Genetic Linkage Study

After an initial exclusion of linkage to selected DNA
markers from the sites of the GLC1A on 1q, GLC1B on
2q, GLC1C on 3q, and GLC1D on 8q, a series of can-
didate gene loci that could play a role in the etiology of
glaucoma in this family were also screened. However,
linkage study of these DNA markers did not reveal any
indication of linkage. Furthermore, in view of a number
of mutations reported in the TIGR gene (MIM 601652)
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Figure 2 Visual fields (Humphrey visual field analyzer) for the
proband (III:1) in pedigree POAG-90. In the field for the left eye (OS;
top), severe upper arcuate loss and marked lower arcuate loss are
apparent. For the right eye (OD; bottom), both marked upper and
lower arcuate loss are seen. Both visual fields are typical of POAG.
Global indexes are as follows: MD = mean deviation; PSD = pattern
SD; SF = short-term fluctuation; CPSD = corrected pattern SD, all
for which probabilities (%) are given.

for both juvenile- and adult-onset types of POAG, we
screened the proband of this family with this gene. SSCP
of the coding regions of the TIGR gene did not reveal
any mutations in this family. Subsequent to a random
genomewide search, a hint of linkage was obtained with
one of the DNA markers located on the short arm of
chromosome 10, band p15-p14 (i.e., D10S1172). An
additional 23 markers from the same region were used
to saturate the area surrounding this newly identified
location (designated the “GLC1E” locus).

A total of 22 DNA markers located within the 10p15-
p14 region provided LOD scores of >3.0 in this family
(table 2). Construction and inspection of the haplotype
transmission data (fig. 1) also showed a common af-
fected haplotype that has been clearly inherited by a total
of 15 living and 1 deceased (whose genotypes were in-
ferred from his 5 living offspring and spouse) affected
subjects and 3 other at-risk subjects who were 19
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Figure 3 Optic discs (Heidelberg retinal tomograph) and visual fields (Humphrey visual field analyzer) for the proband’s youngest daughter
(IV:2). A, Right visual field, showing nasal step with slight upper and lower arcuate depression of sensitivity. B, Left visual field, with marked
upper and lower arcuate loss resulting in a ring scotoma. As in figure 2, the global indexes and their probabilities are given. Both optic discs
are grossly abnormal when compared with an age-match group, with the left disc (B) being more affected than the right (A). The findings are
typical of POAG, which is much more marked in the left eye.
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Table 2
LOD Score between the GLCTE locus and 24 DNA Markers on the 10p15-p14 Region

ALL AFFECTED

LOD SCORE AT § = MEIOSES ONLY

MARKER .00 .05 .10 15 .20 25 .30 .35 40 45 Zoo 0o Zoae  0ak
D10S1153 —o0 6.66 6.47 598 535 461 378 287 1.88 .85 6.66 .06 214 .06
ATA84DO2 —o 4.58 4.55 424 379 325 262 193 1.19 47 462 .07 285 .00
D10S591 —o0 552 543 505 454 392 322 245 1.61 73 5.54 .06 .79 .10
D10S1729 —o 5.52 520 473 417 3.55 288 214 1.36 .57 5.55 .04 181 .00
D10S1713 —o0 522 491 444 390 330 266 197 1.26 .54 525 .04 2.70 .00
D10S179 —o 6.61 621 5.65 499 425 345 258 1.66 .72 6.66 .03 332 .00
D10189 —o0 445 429 395 350 298 239 175 1.06 .39 445 .05 197 .00
D10S1751 6.09 5.67 518 4.65 406 343 275 204 1.29 .54 6.09 .00 291 .00
D10S1691 525 5.06 470 427 376 321 260 195 1.25 .54 525 .00 2.01 .00
D10S1779 435 440 417 3.82 339 290 236 1.77 1.13 47 444 .03 293 .00
D10S1172 832 7.87 724 653 574 489 397 298 1.94 .87 8.32 .00 332 .00
D10S1431 272 247 222 195 1.68 140 1.12 .83 .54 27 2.72 .00 1.33 .00
D10S1420 5.89 541 491 438 381 322 259 194 1.26 .59 589 .00 2.08 .00
D10S1412 4.63 423 3.81 337 292 245 196 1.46 .95 46 463 .00 1.77 .00
D10S585 424 391 355 316 2.75 231 185 1.36 .84 .34 424 .00 248 .00
D10S1216 10.00 9.20 836 747 6.54 555 450 3.39 222 1.01 10.00 .00 3.43 .00
D10S2325 7.85 730 6.67 597 522 441 354 261 1.62 .63 7.85 .00 2.78 .00
D10S1430 3.77 348 3.18 286 251 215 1.76 1.36 .93 47 3.77 .00 205 .00
D10S527 7.07 6.57 598 532 4.62 387 3.08 226 1.41 .59 7.07 .00 3.16 .00
D10S506 9.70 891 8.09 722 630 534 432 325 212 .94 9.70 .00 3.57 .00
D10S1725 231 2.09 1.87 1.64 139 1.14 .88 .61 .35 13 2.31 .00 .84 .00
D10S1664 —o0 6.00 5.64 511 449 3.80 3.05 224 1.38 .54 6.04 .03 254 .06
D10S191 —o0 543 540 505 4.55 395 325 247 1.62 .74 548 .07 244 .06
D10S674 —o0 3.04 312 294 264 227 1.84 137 .87 .40 313 .08 121 .10

(IV:3), 17 (IV:4), and 41 (IV: 19) years old at the time
of this study. Since these three normal subjects are still
below the mean age at onset in this family (i.e., 44 years),
they are still at risk for developing this condition in the
future and therefore are considered to be “gene carriers”
for this phenotype. Furthermore, we have identified 20
unaffected subjects who have inherited an entire normal
chromosome from their affected parents. One normal
subject (II1:23), who is now 59 years old, was recom-
binant for the telomeric portion of the affected-bearing
chromosome and has passed this to her two normal
daughters (IV:23 and IV:25). However, these three sub-
jects shared a minimum normal-bearing region of a hap-
lotype that is not recombined with the glaucoma phe-
notype. This minimum region includes marker
D10S1216, which incidentally provided the maximum
linkage information data for this family. In summary, of
a minimum of 42 directly scorable meioses in this family
(including II:1, who was inferred), a total of 39 subjects
inherited either part of or the entire chromosome that
is complementary to their prior clinical classification.
The other three affected-haplotype—carrying normal
subjects are still too young to show any sign of this
condition and, therefore, may develop glaucoma at some
time in the future or, alternatively, may remain as asymp-
tomatic gene carriers.

For the purpose of statistical linkage evaluation by the

classical parametric method of LOD score analysis, the
status of the three subjects mentioned above with af-
fected-bearing haplotypes was coded as unknown,
whereas the clinical status of the three normal subjects
(ITI:23, TV:23, and IV:25), who were recombinants for a
portion of the same affected-bearing haplotype, was
coded as normal. The two-point linkage between the
disease locus and DNA markers provided a maximum
LOD score of Z_,, = 10.00 at a recombination fraction
of # = .00 with DNA marker D10S1216. Table 2 shows
the LOD scores with a group of other STRP markers
from the same region of this chromosome. As shown in
this table, there is an overwhelming evidence for linkage
of this family (i.e., LOD values of 3.77-10.00) to a total
of 22 STRP markers from the 10pl5-p14 region. We have
further examined the genetic linkage relationship of this
family to the same DNA markers for only the affected
subjects of this pedigree. Although this has resulted in
reduction of LOD scores, as expected, the scores have
remained statistically significant (i.e., Z_ .. > 3.0). For
example, we have obtained LOD scores of 3.32
(D10S179 and D10S1172), 3.43 (D10S1216), 3.16
(D10S527), and 3.57 (D10S506) at 6 = .00. A four-
point linkage analysis between the disease phenotype
and three DNA markers of D105S591, D10S1216, and
D10S1664 produced Z,,,, values of 10.17 at § = .00 for
the entire family and a corresponding Z_.. value of 3.72

max
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when only the affected meioses were used. The minimal
increase in the LOD score obtained with this multipoint
analysis can be expected, since the D10S1216 marker
was fully informative in this family and, when used
alone, provided corresponding Z_ .. values of 10.00
(when the entire family was used) and 3.43 (when only
the affected meioses were used).

The pedigree size and availability of genotypic data
for a total of 26 unaffected subjects in this family
prompted us to evaluate the potential influence of in-
complete penetrance on the overall values of the LOD
score. In order to do this, three liability classes were
defined for the glaucoma phenotype in this pedigree.
They consisted of class I, for all spouses who married
into the pedigree, class II, for all the affected individuals,
and class III, for the normal and healthy offspring who
were born to an affected parent and were therefore at
risk for developing the condition. We evaluated the LOD
scores for the most informative marker, D10S1216, as-
suming an incomplete-penetrance rate that varied be-
tween 0% and 50%, once by coding the three “gene
carriers” mentioned above as unknown and, next, by
repeating the LOD score calculation when they were
coded as “normal” and “at risk.” All other normal off-
spring were also coded as being “at risk.” As shown in
figure 4, when these three subjects were coded as gene
carriers, sequentially decreasing LOD scores of
10.00-7.01 were obtained for different values of incom-
plete-penetrance rates (fig. 4, curve A). However, when
these three subjects, like other unaffected offspring of
this pedigree, were coded as at risk (with full penetrance,
a Z,,, value of 6.31 at § = .08 was obtained), a Z
value of 7.26 was obtained at an incomplete-penetrance
rate of 18% (i.e., complete penetrance rate of 82%).
Other LOD scores varied between 6.58 at 5% rate and
6.48 at 50% rate (fig. 4, curve B). Therefore, this result
suggested that the penetrance rate for this pedigree and
possibly for the POAG group of eye conditions, may be
~82%. This obviously will have an implication for those
involved in the gene mapping of this group of eye con-
ditions, because the number of potential unaffected gene
carriers in their pedigrees may be <18%, thus reducing
the power of linkage detection in the families being
studied.

Inspection of haplotypes in this pedigree revealed two
critical recombinants in two affected individuals that
limited the location of the GLC1E locus telomerically to
D10S1729 and centromerically to D10S1664, within a
genetic distance of ~21 cM (figs. 1 and 5). However,
because of the lack of informativeness of a number of
DNA markers, the precious site of recombination (see
fig. 5) for a region of ~4 cM that is covered by D10S552
and D10S189 cannot be determined. Therefore, the crit-
ical region of interest is likely to be within a 17-21 cM
region that is covered by the latter two markers. Fur-
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Figure 4 Effect of incomplete-penetrance rates on LOD scores

of D10S1216 at # = .00, when the three gene carriers were coded as
(A) unknown or (B) at risk. For the latter, the arrow points to a Z,,,,
value of 7.260 at an incomplete-penetrance rate of 18%.

thermore, we have observed another crossover in an un-
affected 59-year-old female (I1I:23) who has inherited
the telomeric portion of the affected-bearing chromo-
some, including D10S1172 (fig. 5). However, the extent
of this recombination for other markers mapping be-
tween this marker and D10S585 cannot be determined.
Thereafter, for all the centromeric markers located be-
tween D10S585 and D10S674, she has inherited the nor-
mal-bearing portion of the chromosome (figs. 1 and 3).
If neither she nor any of her offspring is ever going to
develop glaucoma, it is likely that the GLCI1E locus
could be limited to a region that is flanked by D10S585
and D10S1664, within a region of ~5 ¢cM. However,
because the incomplete penetrance has been well doc-
umented for this group of ocular conditions, one must
consider the latter confined region cautiously. There are
at least three YAC clones from this region that have been
physically mapped (fig. 5). Although clone 809-F-9 has
been mapped to 10p135, the other two YAC clones, 747-
H-8 and 808-A-2, have been mapped to the 10p14 band
(see fig. 5). Therefore, the physical location of the
GLCI1E locus is also on the 10p15-p14 region. However,
if one takes into account the recombination event in the
above-mentioned unaffected subject, the GLC1E locus
would be expected to reside on band p14 of chromosome
10.

Discussion

In recent years, researchers have been focusing their
efforts to map, identify, and clone a number of genes
responsible for inherited eye disorders. Significant pro-
gress has already being achieved for a number of eye
diseases, including retinitis pigmentosa (RP), for which
>30 different loci are now thought to be participating
in the etiology of the condition (Dryja and Li 1995).
However, very little work has been done on the molec-
ular genetic study of glaucoma, until recently. Juvenile-
onset POAG has been mapped to the 1q21-q31 region
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cM  STRPs STS/ Genes / Representative Cross Overs
Top EST Transcripts YACs
A 9_ N
12 D10S1153
ATA84D02 WI-1758 CBA1 809-F-9
WI-5839 (On p15)
12 D10S591 PFKP
12 D10S1729 DDH1 813-D-3 Z
13 D10S552 (KIAAD119)
WI-4308 1751-B-12
NET1
WI-598
13 D10S1713
D10S178 882-D-4
D10S179
WI-4663 944-D-12
IL2RA 952-C-8
IL15RA 962-E-2
PRKCT
WI-5084
17 D10S189
20 D10S1751
21 D10S1691 IT1H2 927-G-5
23 D10S1779 (W-17151) | 781-B-12
D10S1172
D10S1431
WI-5574
hGATA3
WI-600  (SGC34122) |918-H-11
26 D10S1720
AFM154YB4
26 D10S1420 WI-2389 849-A-3
26 D10S226 WI-4120 747-H-8
ATA111B06 (On p14)
D10S1412
28 D10S547
WI-4752
WI-4124 773-C-3
29 D10S585 %
WI-9613
WI-2961
WI-9452
1B3080
22 WI-8545
WI-9211  KIAA0019
D10S1216 916-D-6
D10S2325 WI-8819
23 WI-9659
D10S1430 749-D-7
32 D10S1705
24 AFMA204WE1
AFMA111YB9 950-B-12 |972-H-5 808-A-2
25 32 D10S1707 (On p14)
32 D10S223
32 D10S570
D10S527
26 NIB1436 D123
WI-6571  (WI-11468)
10 D10S506 WI-1985 %
34 D10S1725
\34 D10S1664 Isss-D-1o
36 D10S191 WI-9933
D10S674 Z

Figure 5 Chromosomal location, linkage, and partial physical map of the GLC1E locus. On the far left part of this figure, the approximate
location of this locus on p15-p14 is indicated. This is followed by a column showing the accumulative recombination fractions from the top
of this chromosome. Next, the composite order of the STRP markers is based on the published linkage and radiation hybrids maps as well as
the YAC contigs and physical mapping data. The STRP markers genotyped in the POAG-90 family are shown in boldface. The next column
shows approximate locations of the STS and EST markers, based on the data obtained from the Whitehead Institute for Genome Research.
The locations of genes and other transcripts in the next column are based on data obtained from both the Whitehead and Stanford radiation
mapping data. A selective number of YACs covering the GLC1E candidate region is also shown. Note that YAC 809-F-9 maps to p15 and
YACs 747-H-8 and 808-A-2 to p14. On the far right of this figure, the observed crossovers in two affected individuals (A), III:14 and IV:11,
are shown with two solid-black bars. The last bar represents the crossover in the normal individual (N), I1I:23. The nonrecombinant portions
of these three chromosomes are shown with hatched bars. For individual IV:11 (second black bar), the thin black bar indicates that the exact
site of recombination between D10S552 and D10S189 is unknown. Similarly, the thin portion of the last bar, for normal individual II1:23,
indicates that the exact site of recombination between the two markers D10S1172 and D10S585 is unknown.
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(Sheffield et al. 1994; reviewed by Raymond [1997] and
Sarfarazi [1997]), and, recently, it has been shown to be
the result of mutations in the TIGR gene (Adam et al.
1997; Stoilova et al. 1997; Stone et al. 1997). Similarly,
three other loci for COAG have been mapped to the
2cen-q13 (GLC1B; Stoilova et al. 1996), 3q21-q24
(GLC1GC; Wirtz et al. 1997), and 8q23 (GLC1D; Trifan
et al., in press) regions. However, there is now evidence
that these four loci are heterogeneous, and additional
loci are expected to be involved in the etiology of this
group of eye disorders. In our continuing efforts to map
and identify gene loci responsible for different glaucoma
phenotypes, in addition to the GLC1B locus on 2cen-
q13 and GLC1D on 8q23, we have mapped two other
loci (GLC3A on 2p21, Sarfarazi et al. 1995; GLC3B on
Ip36, Akarsu et al. 1996) for primary congenital glau-
coma (Buphthalmos) and, more recently, have shown
that GLC3A (MIM 231300) on 2p21 is due to mutations
in the cytochrome P4501B1 (CYP1B1; MIM 601771)
gene (Stoilov et al. 1997, 1998 [in this issue]). The con-
genital form of glaucoma, like POAG, is also hetero-
geneous, and there is evidence that other loci are also
involved in the etiology of this infantile condition. There-
fore, what has already been observed for RP may well
be anticipated for glaucoma. The mapping of the first
three loci for late-onset POAG has been an opening cer-
emony to a large number of loci that are predicted to
be involved in this group of eye disorders.

In this study, we used a very well defined and char-
acterized single large COAG family and searched the
genome to identify a locus for this condition. Our initial
strategy of searching for linkage to all the known glau-
coma loci, as well as to other potential candidate gene
loci, was not successful, and, therefore, we embarked on
a random genomewide search to identify the putative
locus in this family. After genotyping >95 microsatellite
markers, we detected linkage with a DNA marker from
the 10p15-p14 region. Subsequent analysis with 23
markers from the same region confirmed the initial link-
age in this family. Our analysis indicated that this locus
(designated “GLC1E”) is tightly linked to D10S1216,
with Z_ .= 10.00 for all the meioses or a corresponding
value of Z_ .. = 3.43 at 6 = .00 when only the affected
meioses were used. The GLCI1E locus is found to be
flanked by D10S1729 telomerically (Z,. = 5.55; 6 =
.04) and by D10S1664 (Z,..= 6.04; 6 = .03) cen-
tromerically, within an estimated genetic distance of ~21
cM. Of a total of 42 affected and normal members of
this family, 39 subjects have inherited the appropriate
haplotype compatible with their previously classified
clinical phenotype. The other three subjects are still too
young to show any sign of the condition.

The clinical manifestation in most of the affected sub-
jects of this family represents a classical NTG with cup-
ping of the ONH and visual field loss, in the absence of
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increased IOP. Inspection of 15 affected members of this
family revealed a lower mean age at detection of 43 years
(range 23-65 years) in 12 subjects classified by definition
as NTG, as compared with the 3 others defined as
COAG, with an average age of 48 years (range 38-62
years). The average IOP for family members with NTG
was 17.58 mmHg (range 14-21 mmHg) untreated and
14 mmHg (range 6-17 mmHg) treated, whereas in the
COAG members it was 23 mmHg (range 21-25 mmHg)
untreated and 13 mmHg (range 10-18 mmHg) treated,
with a diurnal variation of 5-6 mmHg. The cup/disc
ratios averaged 0.78 (range 0.60-0.95) in patients with
NTG and 0.80 (range 0.50-0.90) in the COAG patients.
Although some ocular and systemic findings such as my-
opia, systemic hypertension, vascular disease, and mi-
graine are reported to be unusually common in the NTG
patients (Werner 1996), we could not prove any asso-
ciation between these and the NTG phenotype in the
family investigated here. There is clearly much clinical
overlap between COAG and NTG, if indeed it is basi-
cally justifiable to separate POAG into these two com-
ponents. Genetic determination of families such as the
one described in this report, together with DNA geno-
typing, will almost certainly lead to more coherence in
the subclassification of POAG.

A number of genes that are known to be located in
this region of chromosome 10 could positionally be con-
sidered as candidates involved in the etiology of this
particular POAG family. A partial list of these genes (fig.
5) includes PFKP (6-phosphofructokinase, type C; MIM
171840), DDHI1 (trans-1,2-dihydrobenzene-1,2-diol de-
hydrogenase), NET1 (guanine nucleotide regulatory
protein), IL2RA (interleukin-2 receptor, alpha; MIM
147730), ILISRA (interleukin-15 receptor, alpha; MIM
601070), PRKCT (protein kinase C-theta), ITTH2 (inter-
alpha-trypsin inhibitor complex component II; MIM
146648), hGATA3 (trans-acting T-cell specific transcrip-
tion factor), the mRNA for open reading frame
KIAA0019, and the gene for D123 protein. Both PFKP
and DDH1 map very close to D10S591, a DNA marker
that has recombined in one of the affected subjects
(IV:11; fig. 1). After constructing the haplotypes in this
branch of the family, we were able to infer the haplotypes
of her deceased father (III:15) and to further refine this
crossover to between markers D1051729 and D10S189
(fig. 5). Therefore, the last two genes are probably ex-
cluded in this family. Furthermore, physical mapping
data suggest that NET1, IL2RA, IL15RA, and PRKCT
lie within this uninformative region. Therefore, it is
likely that all or at least some of these genes are also
excluded, depending on the exact position of recombi-
nation in this region. ITIH2 is a part of the inter-alpha-
trypsin inhibitor (ITI) complex (Gebhard et al. 1988).
ITI is a human serum protease inhibitor of molecular
mass 240 kD, which may release physiological deriva-
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tives, and has been shown to interact with hyaluronic
acid, resulting in pericellular matrix stabilization (Ko-
bayashi et al. 1996). This is a potential candidate gene
for the phenotype observed in this family. Mapped be-
tween D10S189 and D10S1664 are hGATA3, the
mRNA for open reading frame KIAA0019, and the
D123 protein. Their potential involvement in the eti-
ology of this phenotype remains to be investigated.

A homologue of the above-mentioned genes within
the GLC1E candidate region has already been mapped
to the mouse chromosome 2; the homologue of this phe-
notype is expected to be on the same mouse chromo-
some. There are currently no known genes in the mouse
that can be considered as the homologue of the GLC1E.
Further work is currently in progress to search for mu-
tation in a number of these genes and eventually to as-
certain the identity of the defective gene for the 10p15-
pl4-linked POAG family.
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